Quasi-Optimal Partial Order Reduction
نویسندگان
چکیده
A dynamic partial order reduction (DPOR) algorithm is optimal when it always explores at most one representative per Mazurkiewicz trace. Existing literature suggests that the reduction obtained by the non-optimal, state-of-the-art Source-DPOR (SDPOR) algorithm is comparable to optimal DPOR. We show the first program with O(n) Mazurkiewicz traces where SDPOR explores O(2 n) redundant schedules and identify the cause of the blow-up as an NP-hard problem. Our main contribution is a new approach, called Quasi-Optimal POR, that can arbitrarily approximate an optimal exploration using a provided constant k. We present an implementation of our method in a new tool called Dpu using specialised data structures. Experiments with Dpu, including Debian packages, show that optimality is achieved with low values of k, outperforming state-of-the-art tools.
منابع مشابه
Monotonic Partial Order Reduction: An Optimal Symbolic Partial Order Reduction Technique
We present a new technique called Monotonic Partial Order Reduction (MPOR) that effectively combines dynamic partial order reduction with symbolic state space exploration for model checking concurrent software. Our technique hinges on a new characterization of partial orders defined by computations of a concurrent program in terms of quasi-monotonic sequences of thread-ids. This characterizatio...
متن کاملIntegrating Partial Order Reduction and Symmetry Elimination for Cost-Optimal Classical Planning
Pruning techniques based on partial order reduction and symmetry elimination have recently found increasing attention for optimal planning. Although these techniques appear to be rather different, they base their pruning decisions on similar ideas from a high level perspective. In this paper, we propose safe integrations of partial order reduction and symmetry elimination for cost-optimal class...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملAre Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage linear stochastic programs. Their integrands are piecewise linear, but neither smooth nor lie in the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are cont...
متن کاملQuasi-Monte Carlo methods for linear two-stage stochastic programming problems
Quasi-Monte Carlo algorithms are studied for generating scenarios to solve two-stage linear stochastic programming problems. Their integrands are piecewise linear-quadratic, but do not belong to the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.03950 شماره
صفحات -
تاریخ انتشار 2018